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Abstract

We present Circles1, a currency protocol that provides a completely decentral-

ized and radically accessible complement or alternative to fiat money. It has

been designed around the single goal to not put any participant or institution,

current or future, at an undue and systematic advantage over another, while

remaining attractive as a means of exchange. We believe that money which is

freely adopted by people will enjoy lasting stability only through built-in fairness

properties.

Circles achieves this by i) making every user an issuer of money, ii) providing

a predictable bottom-up monetary policy that is based solely on the number

of participants, while iii) allowing anybody to join without any centralized gate-

keeping. The protocol relies on existing social relations between people and

groups in place of incumbent political and financial institutions to back the cur-

rency, to safeguard against malicious parties and the undesired concentration

of monetary control or extraction of profits frommoney issuance. By leveraging

these social structures, Circles not only fosters local autonomy but also creates

a viable path toward a global currency system.

Crucially, Circles represents an unaligned form of money—free from the influ-

ence of any single nation, corporation, or geopolitical bloc—and is thus ideally

suited to thrive in a multipolar world.

This whitepaper provides a detailed account of this new currency protocol, its

motivation, and inner workings, and alsomakes the case for its economic sound-

ness, despite its radical design.

1Since its conception byMartin Köppelmann in 2014, Circles’ vision has drawn diverse independent teams to

contribute to its development - fromearly theoretical work through the 2020 technical launch by a cooperative

and community implementations in Berlin and Bali to the work presented here. All code is open-sourced at

https://github.com/aboutcircles. For early presentation of the idea, see for example this article and this article.

There is also version of this whitepaper live as a decentralized doc, wherewe invite interested readers to provide

feedback and participate in the discussion on how to improve the protocol and its presentation.
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1 Introduction

A currency can be anything - gold coins, debt certificates, entries in a virtual ledger - that

a group of people use for transacting with another. It lubricates the economy by facili-

tating exchange, serving as a store of value as well as as a unit of account (i.e. it allows

the comparison of goods by value). Yet, currencies are also a source of political and eco-

nomic power. The ability to issue money at a cost below face value gives the issuer the

ability to impact the distribution of the money supply — who gets how much — and the

conditions under which money is accessible, i.e. the monetary policy. Today, banks hold a

monopoly over the creation of the national currency whose usage is, fundamentally, en-

forced through political authority. This money is issued, both by the central bank as well as

commercial banks, mostly through the extension of loans. We believe that this monopoly

over the issuance of currency is problematic, for the following reasons:2

• As with all concentration of power, the centralization of money issuance leads to ex-

ploitation by those in charge and creates an obvious target for those seeking undue

influence. A transparent non-arbitrary mechanism for money genesis is inherently

valuable and serves as a safeguard against such risks.

• Today, newly issued money primarily enters the economy through loans, dispropor-

tionately benefiting those with higher ability to take on credit — mainly big financial

institutions and enterprises. These institutions benefit because being an upstream

recipient of newly created money allows access to the market at conditions that have

not yet incorporated the increasedmoney supply — something that is known as Can-

tillon effect3 —andmoreover there are fewermiddlemen that charge them premiums

than for downstream creditors. This mechanism is a historical artifact. A more equi-

table distribution of the value generated through money issuance, combined with a

more radical democratization of its control, is not only technologically feasible but

also economically and socially preferable.

• A government’s and central bank’s monetary policy should serve the economic in-

terests of the people on whom money is imposed as legal tender. However, lack of

visibility into the dynamics at the grassroots level and coarse tooling have led tomany

poor monetary decisions in the past.

• By construction, government-issued money puts those not served by that govern-

ment at a disadvantage in a myriad of ways. For example, it can link economies with-

out negotiation power to the domestic monetary policy of international powers, as

is evident in the case of the US Dollar system. A global world should have an impar-

tial, unaligned currency whose value is not tied to the interests or world views of any

particular geopolitical bloc, nation or corporation.

The advent of blockchain technology has ushered in a wave of excitement and thinking

2In addition to the reasons given here, various authors have elaborated on the potential benefits of pri-

vate and/or local currencies, such as smoothing of economic cycles. See, for example, Friedrich Hayek’s The

Denationalization of Money (1976) and Silvio Gesell’s The Natural Economic Order (1929).
3See M. Blaug, Economic Theory in Retrospect (1997) as well as the original essay by R. Cantillon, Essay on

the nature of trade in general (1755).

2



around how to overcome these problems. Cryptocurrencies like Bitcoin are minted in a

decentralized manner and participation is open to everyone. However, no cryptocurrency,

Bitcoin or otherwise, has yet succeeded in becoming a fully functional currency, due to

what we believe are intrinsic design limitations. For instance, in a thought experiment in

which Bitcoin becomes the new world currency, over 94% of the total money supply is

concentrated in the hands of the 2-3% of the population that hold Bitcoin today. This is

because Bitcoin has a finite supply, most of which has already been minted. Switching to

such amonetary system is not in the economic interest of the 97+%who do not hold Bitcoin,

as it would effectively result in a massive transfer of purchasing power to existing holders.

Additionally, Bitcoin lacks a monetary mechanism to adjust its supply in response to the

growth of an economy, making it unlikely to achieve the stability in value required to serve

as unit of account and practical medium of exchange. Instead, Bitcoin today serves as a

store of value, earning it the nickname “digital gold”.4 Still, the promise of the Web3 stack

as enabling a world of decentralized governance and finance stands, and, with the ability

to design sophisticated currency systems using smart contracts, the question remains:

What does a currency have to look like to be adopted by people in such a multipolar,

decentralized world, not by virtue of necessity as today, but by virtue of its attractive

properties alone?

Circles is our answer to this question. It is founded on the principle that the most sus-

tainable currency is one that, by design, ensures no party, present or future, is unfairly

advantaged. For us, this implies the following requirements:

• Universal access: Participation is open to everyone.

• Distributed issuance: In a world in which money is not backed by a single authority,

who should own the money creation process and benefit from its value? For us, the

only reasonable answer is: everyone. At any given time, the benefits ofmoney creation

should be available on equal terms to all users.

• Fair access to money supply: A currency’s value relies on trust that it will remain

valuable in the future. To uphold this trust, every active and honest participant5 must

be able to accumulate significantmoney holdings under fair, non-coercive conditions,

regardless of the distribution of supply at the time they join.

• Possibility to organize in shared-interest groups: People and communities know

best the economic problems they struggle with and opportunities they have. A cur-

rency should allow these communities to organize themselves in order to effectively

address these problems and opportunities using monetary mechanisms.

This whitepaper introduces Circles, shows that it meets the above requirements, andmakes

4The recent paper The distributional consequences of Bitcoin by researchers at the European Central Bank

makes a similar case. In a rebuttal paper, Bitcoin proponents state that it is not, in fact, the goal of Bitcoin

(anymore) to become a global means of exchange, which to us indicates that they’d agree with our argument

above.
5We here define an honest users as a user that is using the protocol as intended, and in particular one

that uses a single account to create CRC. As the intention of the protocol might not always be clear, we are

publishing a Circles Etiquette guide alongside this whitepaper in which a number of Do’s and Don’ts for Circles

are clarified.
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the case for its economic soundness as a currency despite its radical departure from

money as we know it. In the following, we use “Circles” to refer to the protocol and “CRC”

to denote the currency created as part of the protocol.

2 Circles

The Circles protocol is completely defined by the following simple rules:

1. Universal access: Anyone can create an account without any gatekeeping.6

2. Distributed issuance: Each account has the right to create their own, individual CRC

at a rate of 1 CRC per hour.7

3. Demurrage: Every CRC gradually loses nominal value at a rate of 7% per year.8

4. Rule of Trust: Accounts can trust one another. If account A trusts account B, then

anyone in the network holding CRC created by B can swap them, at any time, for any

CRC held by A, at a rate 1:1.

5. Groups: Anyone can create a group and add accounts as its members, by trusting

them. Groups support their own CRC, however these CRC are not issued continu-

ously, instead they can be created from and redeemed against CRC that have been

created by its members, at a rate 1:1.

Before delving into the details, let us briefly describe how those rules map to the require-

ments above: The first two rules establish the eponymous requirements. The second part

of rule 2 concerning the steady issuance rate, together with rule 3, creates a monetary

policy that ensures fair access to money supply. It also ensures that early adopters don’t

receive an outsized benefit, such as with finitely supplied money. The fourth rule, the Rule

of Trust, drives the mechanism by which we exclude dishonest parties from exploiting the

system. It also enables the transition from the initial multitude of individual, non-fungible

currencies created by the honest participants into a quasi-fungible state, leading effec-

tively to the emergence of a single currency, CRC. Since all honest parties are allowed to

create tokens of this shared currency at the same rate, rule 2 ensures an equitable distribu-

tion of seigniorage. Finally, Groups address our final requirement, to enable shared-interest

groups to organize themselves economically. They form a powerful primitive in Circles.

In order to discuss these points in detail, it is helpful to distinguish between themicro level

and themacro level of Circles. The micro level examines the interplay of all the many indi-

vidual currencies that participants are creating, focusing on the possible states and transi-

tions enabled by the rule of trust. The macro level, on the other hand, looks at the emergent

6A natural question is whether AI agents should be allowed to create an account. CRC is a currency that

should only be created by people. As such, AI agents and applications are encouraged to exist on Circles,

however they should be using the Organization accounts that we discuss below and that cannot create CRC.
7In the current implementation, a user has two weeks per CRC to make use of this right. CRC that have not

been created for two weeks are forfeited.
8Demurrage as the property of money to lose value over time has been part of many alternative currency

proposals. In the current implementation, the demurrage gets applied daily, starting from the time a user has

the right to create: Every day (specifically at midnight UTC), every CRC balance in the system gets reduced by

a factor of 0.931/365.25 ≈ 0.9998.
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properties of the system, in which most of the CRC created by honest participants become

effectively fungible with another, allowing us to evaluate the “macroeconomic” properties

of Circles.

Webeginwith examining themacro level to substantiate our claim that, assuming all partic-

ipants are honest and the currency is fully fungible, CRC satisfies the outlined requirements.

Subsequently, we address the micro level, where these assumptions are both dropped. We

demonstrate how the rules of Circles ensure that, under mild conditions, a fungible cur-

rency will still emerge for the honest subset of accounts, excluding malicious accounts

from economic activity. Finally, we introduce Circles Groups and Organizations in the last

section.

Fig.1: The micro and the macro levels of Circles. Arrows depict trust connections. At the micro-

level, we distinguish between different types CRC depending on which account has created them.

We also assume that accounts might be malicious and try to game the protocol to their unfair

advantage. The rules of Circles are meant to ensure that, at the emergent macro level, from the

point of view of honest users the difference between various types of CRC disappears or becomes

largely negligible and malicious actors are effectively cut off from the network.

3 The Macro Level

For the purposes of this discussion of the macro level, we assume that all participating

parties are honest and that all CRC issued are fungible and valued in the economy. We ask

how an economy would look if Circles was to become generally adopted.

Circles in practice

Let us go through a simple example of Circles in practice: Say today you own 10000

CRC. Due to the 7% demurrage, 9300 of these CRC remain today in a year. More-

over, if you continuously create your CRC throughout the year at a rate of 1 CRC per

hour, this yields an additional 8479 CRC (resulting from the roughly 8760 hours per

year combined with demurrage), so that a year from today your total balance of

CRC is 17779 CRC. If, on the other hand, you had started today with 200000 CRC,
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then today in a year 186000 of these would remain, so that all together you’d end

up with 194479 CRC.

3.1 Fair access to money supply

As stated above, we believe that for a currency to become adopted voluntarily, one impor-

tant requirement is that every active user should be able to benefit in just the same way

from the ability to issuemoney and accumulate significantmoney holdings over the course

of their participation in the economy. Moreover, this ability should be independent of the

existing distribution of money at the time a user joins the system. In particular, it should

be impossible for any existing users, no matter how wealthy, to prevent new users from

building up money holdings and purchasing power. This fair access is crucial for the cur-

rency to retain value over longer periods of time: If a currency cannot ensure that it will be

attractive to future adopters, then this anticipated lack of value tomorrow will undermine

its value today.

Circles satisfies this requirement in the following strong sense: In every period, newly cre-

ated CRC constitute a significant portion of the total supply and are distributed equally

among active users. This allows new-joiners to build a share of the money supply quickly,

regardless of the distribution when they joined: Consider a user who enters the system at

some time t and let mt′ denote the percentage of the total money supply that they have

issued at some later time t′ ≥ t. Then it is easy to show that, for a constant population N ,

mt′ =
1

N

(
1

γt,t′ + 1

)
, (1)

where γt,t′ ∝ 0.93(t
′−t) is a factor that diminishes exponentially (albeit slowly) in the time

difference t’− t (in units of years). This shows that, regardless of the existing money supply

and distribution at the time somebody joins or the actions of others, a user will contribute

a percentage of the money supply that is roughly inversely proportional to the size of the

population. This result also holds true for populations that vary over time, as we discuss

in the Appendix. Hence, Circles provides fair access to the money supply in the sense of

having all users benefit equally from the issuance of money
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Fig. 2: The effective tax in Circles: This graph plots the inverse annual rate of relative change of

the CRC balance, as a function of its initial balance, when a user is only creating new currency and

not participating in any transactions : A user starting off with 30k CRC will see their balance grow

by approximately 35%, equivalent to an effective tax of -35%. At the special point of 120804 CRC,

the balance remains exactly unchanged, resulting in an effective tax of 0%. Balances above this

threshold will overall lose in value. As the balances become larger, the effective tax converges to

7%, i.e. the demurrage completely dominates the negligible influx of newly created CRC. Note that

the effective tax diverges as the balance goes to zero (which is not shown on this graph).

Another way to look at this dynamic is shown in Figure 2, where the (inverse) rate of relative

change in the CRC balance for a single account is plotted as a function of its initial balance.

This rate can be understood as an effective tax resulting from the combined effects of con-

tinuous token issuance and the 7% annual depreciation of existing CRC.9 At 120804 CRC,

these opposing forces balance precisely. Accounts with balances below this threshold ex-

perience a net increase (negative tax), while those above see a net decrease (positive tax).

Consequently, without transactions, each account’s balance will naturally converge to this

stable value. This means that, over time, the total share of the money created by any group

will be proportional to its size.

Why 7% demurrage

The demurrage rate and the issuance rate are the only two free parameters in Cir-

cles. The challenge is to choose them such that CRC are sufficiently stable as an

intermediate store of value to encourage people to accept and hold them, while

the effects captured in Equation (1) also ensure the currency remains attractive

for new participants. Our choice of 7% annual demurrage and 1 CRC/h issuance

rate rests on two arguments, one empirical and one theoretical: Empirically, the

long term average increase in the money supply of the US Dollar has been slightly

below 7% since the 1960s (as measured in the so-called M2 supply). As discussed

in the box on the inflationary view of Circles below, this is economically equivalent

9We should note, though, that this effective tax is not a money transfer in the sense that the CRC removed

from one account are added to another account.
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to Circles with a 7% demurrage rate. Theoretically, ensuring intergenerational fair-

ness is a central part of Circles. The above choice of values means that accounts

approximately reach the maximum level of 120804 CRC after creating CRC for 80

years, which is roughly the average life expectancy in industrialized countries (see

Fig. 3). As such, the dynamics of the currency are gauged towards the natural unit

of a user’s average lifetime.

Fig. 3: This graph illustrates the total amount of CRC in circulation (i.e. the total nominal value) that

have been created by a user over their lifetime (and beyond) over time, assuming they pass away

at the age of 80. By this point, they have approximately reached the stable balance of 120804

CRC. After creation stops, the amount of their CRC in circulation decreases exponentially, with a

half-life of approximately 10 years.

Finally, it may seem that this behavior of balances converging over time is some kind of

radical feature embedded in the currency. However, this interpretation is misleading. Every

currency exposed to inflation undergoes a similar wealth redistribution effect, a concept

extensively analyzed by economists such as Keynes, Friedman, or Piketty.10 In fact, there is

an alternative way to understand Circles, the inflationary view, which reveals this dynamic

within a more familiar economic framework (see below).11

A noteworthy implication of demurrage is that, despite the constant creation of newmoney,

it is actually perfectly possible that prices in a Circles-based economy stabilize in the long

run, even if the economy grows at a steady rate, or even go down. That is, while the dis-

tribution of purchasing power in the economy constantly shifts in favor of currently active

10See e.g. Ch. 6 of J.M. Keynes, The Economic Consequences of the Peace (London: Macmillan & Co., 1919);

M. Friedman, Money Mischief: Episodes in Monetary History (New York: Harcourt Brace & Co., 1992). T. Piketty,

Capital in the Twenty-First Century (Cambridge, MA: Harvard University Press, 2014); See also M. Doepke and

M. Schneider, Inflation and the Redistribution of Nominal Wealth (Journal of Political Economy, 114:6, 2006)
11In an influential paper, Kocherlakota argues that money can be viewed as a mechanism for tracking past

economic activity and achievements. He demonstrated that any state achieved by an economy using money

could equally be achieved if, instead of money, there was a central memory ledger visible to all participants,

recording past economic activities. In this analogy, we can interpret money with a wealth redistribution effect

as a form of leaking memory: The wealth and accomplishments of former generations matter, but just like their

monuments erode or are replaced over time, so the value of their money slowly fades.
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members, just like in the case of money experiencing inflation, the prices of goods can

remain unchanged, even over decades. To support this, in the Appendix we formulate a

so-called overlapping-generations model — one of the foundational models in monetary

economics — of a Circles based economy and show that any steady-state competitive

equilibrium in this economy with constant per-capita output will have prices that stabilize

over time.

The inflationary view of Circles

There is an alternative way of formulating rules 2 and 3 for Circles which introduces

a purely nominal change into the currency. We refer to this as the inflationary view

of Circles. In this perspective, no demurrage applies to coins, however, the amount

of CRC that a user can create increases over time. On the surface, the two rule

Groups appear different: For instance, the total money supply in the inflationary

view grows unboundedly even in a finite economy, whereas Circles’ standard rules

imply a capped money supply in finite economies. However, in terms of real eco-

nomic outcomes, the two views are equivalent. Specifically, equation (1) remains

unchanged. The inflationary view of Circles resembles the behavior of money as

we know it. For instance, inflation in fiat currencies reduces the real purchasing

power of money earned in the past, similar to how demurrage affects older CRC

holdings. In both cases, increasing wages or CRC creation allows current members

to maintain stable purchasing power within the economy.

3.2 Distributed issuance

As discussed above, we consider the radical decentralization of money issuance essential

for an equitable economy, as it would ensure that no subset of actors benefit exclusively

from the advantages of controlling the money supply. These advantages are, on the one

hand, deciding whom to give money to and under what conditions and, on the other hand,

the ability to profit from the creation of a token at a cost below its face value. In the case of

governments, this second advantage is actually known as seigniorage12, which is defined

as central bank revenue from the provision of the national currency, be that through the

printing of cash or through interest payments that it receives on its loans. If we generalize

the definition of seigniorage to mean simply revenue that an issuer of money receives from

the process of issuance, then in Circles the distribution of issuance immediately implies

a complete distribution of the seigniorage across the whole active user base. This is a

central feature of Circles. An important question, then, is how much purchasing power this

seigniorage actually provides. In other words: How much will people be able to buy from

the CRC that they create? Although the answer depends on variables like the value of CRC

in the economy, balance distribution, and demand patterns, a straightforward calculation

12See Seigniorage (2017) by J. Reich for an excellent overview of the history and current institutional relevance

of the term.
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suggests that the contribution of the seigniorage to the average money demand will be

relatively small: Let zt, denote the seigniorage per user (which is the same for all users

under the assumption that all CRC are fungible) and d̄t be the average demand for money

per user, both over period t. Assuming a constant annual growth rate g in the number of

participants, we generally expect, and show in the Appendix, that

zt
d̄t

≈ 0.07 + g

V (1 + g)
.

Here, V denotes the velocity of money, which is a measure of how quickly a currency circu-

lates within the economy. This fraction basically describes the percentage of an average

user’s expenses (say in a givenmonth) that they can cover using the CRC that they created

(during that month ). Hence, for Circles, with an annual population growth rate of 2%, and at

a velocity of around 1 (which is the both approximately the average velocity of major global

currencies and also rougly that of the Euro), we estimate that seigniorage will contribute

around 9% to a user’s average money demand, in the long run. This insight also clarifies

Circle’s relationship to Universal Basic Income (UBI): Although Circles has previously po-

sitioned itself as a form of UBI, it becomes clear that the real economic contribution of

created money to an individual’s spending is notably lower than what is typically expected

of a UBI, which would be closer to 25-30% or even higher. However, for individual users and

in times of significant population growth, such as for example an initial phase of adoption,

the real value of seigniorage can be much higher.

Moreover, we believe that distributed seigniorage could have a substantial compounding

effect on the distribution of balances – and, by extension, on social inequality — in a so-

ciety that adopts Circles. This is because the distribution of seigniorage dampens the

capital compounding effect, whereby having more money makes it easier to accumulate

even more.

Financing and lending in Circles

In a world that adopts Circles, we expect many existing financial products to con-

tinue to exist, however the business models of operators and the distribution of

profits might differ significantly. Today, banks can create money by extending

loans. The extent to which they make use of this ability depends on multiple fac-

tors, some of which are regulatory and some of which are market-driven. As such,

money creation (and money destruction when loans are paid back) is endogenous.

CRC creation and destruction, in contrast, is not endogenous. Consequently, in a

Circles based economy, banks appear primarily as intermediaries that can only lend

out deposits they hold and that charge for their services to assess the creditwor-

thiness of borrowers. As a result, we believe that banks will stand in more competi-

tion for depositors’ CRC, offering higher interest rates to depositors, which in turn

reduces their spread. In effect, we can interpret this as the result of splitting the

current profits into a “service”-component and a “rent”-component, where the first

is a service fee and the second is a rent banks extract for their effective monopoly
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over money creation. The reduced spread and increased deposit interests then

essentially mean that the “rent” component is now passed on to depositors, while

the “service” component remains with the bank.

As a simple example of how lendingwith CRC could work, consider Alice, whowants

to start a business but is out of funds. Today she borrows 10000 CRC from Bob and

over the course of a year makes revenue that results in her account holding exactly

11000 CRC today in a year (with ongoing demurrage factored in). Alice repays Bob

his original 10000 CRC back and keeps a profit of 1000 CRC. For Bob, this loan

is an investment with an effective annual interest of 7%, as his 10000 CRC would

otherwise have depreciated to 9300 CRC.

4 The Micro Level

In the preceding section, we assume that all accounts belong to honest human agents and

that all created CRC function as a fully fungible currency. These are expected emergent

properties of the systemas awhole. However, at themicro level–where the rules are directly

enforced–these assumptions no longer apply. In this section, we examine the dynamics at

this foundational level to understand the specific conditions under which the macro-level

properties emerge.

4.1 Trust and trust-based swaps

Recall that, according to the second rule of the Circles protocol, CRC created by different

accounts are inherently non-fungible across accounts (CRC created by the same account

are fungible with one another). Thus, for two participants, Alice and Bob, we distinguish

between Alice-CRC and Bob-CRC. The interaction between these individual currencies is

governed by the trust relationships between accounts. By trusting Bob, Alice does two

things:

1. She commits to accepting Bob-CRC as valid payment for any services and goods

that she might offer for CRC.

2. She makes her funds effectively exchangeable with Bob-CRC, through the fourth rule,

the rule of trust, which we here restate:

Accounts can trust one another. If account A trusts account B, then anyone in the network

holding CRC created by B can swap them, at any time, for any CRC held by A, at a rate 1:1.

To understand this rule, let’s consider a simple example (see Fig. 4). Suppose Alice trusts

Bob, and Alice holds 5 Alice-CRC, while Carol holds 5 Bob-CRC. Carol can directly swap her

Bob-CRC with Alices’s Alice-CRC without needing additional permission from Alice, as this

permission was given when Alice established trust with Bob. Furthermore, this exchange

does not depend on whether Alice trusts Carol or Bob trusts Carol. The same would apply,

at the same exchange rate, if Alice held any other type of CRC instead of their own.
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Fig. 4: A basic example of the rule of trust. If Alice trusts Bob, any party in the network holding

Bob-CRC can exchange them for any CRC that Alice holds, both those she created and any others

in her possession.

The rule of trust directly ties a user’s wealth to their trust decisions: If Alice trusts Bob and

Bob turns out to be dishonest leading to a loss of purchasing power of Bob-CRC, Alice risks

her own CRC wealth. This is because a) she might have exchanged goods of real economic

value against Bob-CRC, which are now useless and b) anybody in the system can exchange

any CRC that Alice holds for Bob-CRC, depleting her purchasing power.

Trusting is therefore a serious responsibility and users should choose who they trust care-

fully, trusting — in their own best interest — only accounts that they are confident won’t be

unmasked as exploiting the system. We therefore expect trust relationships in the system

to mirror people’s personal social connections. It is the beauty of the Circles protocol that

despite trusting only those they findmost trustworthy, users end up being able to conduct

business also with complete strangers, as we discuss now.

4.2 Transitive transfers

In the following section, we’ll explore how payments between third parties function behind

the scenes; however, keep in mind that all of these mechanics are fully abstracted away

from the user, who only needs to curate their own trust connections.

As stated above, users in Circles commit to accepting CRC by accounts they trust in ex-

change for goods and services. As such, a key factor in ensuring agents can pay one

another across the network is their ability to obtain trusted CRC from users that don’t

trust them directly. Fortunately, through iterative use of the rule of trust, users can access

trusted CRC from across the entire network, by means of transitive transfers. Consider the

following example to illustrate this process:

1. Bob trusts Alice

2. Alice trusts Carol
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3. Alice has 5 Alice-CRC

4. Carol has 5 Carol-CRC

5. Carol wants to pay Bob 5 CRCCarol gives 5 Carol-CRC to Alice and takes 5

Alice-CRC from her.

6. Carol gives 5 Alice-CRC to Bob

In this example, Carol wants to pay Bob 5 CRC, perhaps as payment for some service. She

can do this by obtaining 5 CRC that Bob trusts. Although Carol doesn’t have these CRC

herself, she can get them fromAlice, who trusts her, by using the rule of trust. This sequence

of swaps results in an effective flow of CRC from Carol to Bob, whose direction is opposite

to the path of trust that connects Bob and Alice, as shown in the following figure.

Transitive transfers can also involve multiple “hops” across trusted connections, as shown

in the next example.

1. Bob trusts Alice

2. Alice trusts Carol

3. Carol trusts Dave

4. Alice has 5 Alice-CRC

5. Carol has 5 Carol-CRC

6. Dave has 5 Dave-CRC

7. Dave wants to pay Bob 5 CRC

8. Dave gives 5 Dave-CRC to Carol and takes 5 Carol-CRC from her

9. Dave gives 5 Carol-CRC to Alice and takes 5 Alice-CRC from her

10. Dave gives 5 Alice-CRC to Bob

This sequence of applications of the Rule of Trust results in the following effective flow:
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Note that, although these examples involve transferring different types of CRC along a path,

the transaction appears at the macro level as the straightforward transfer of 5 CRC from

sender to receiver. Additionally, the total amount of CRC holdings of each intermediate

party remains constant throughout the process. This demonstrates an important general

property of Circles:

Conservation of Trusted Balance

In Circles, each user’s total balance of trusted CRC is protected and cannot be

reduced by the actions of others.

The example transaction above was only possible because a chain of swaps existed, allow-

ing the sender to obtain trusted CRC from intermediate parties who held sufficient CRC

balances themselves.13 As we will discuss in more detail below, we expect such chains of

swaps to exist between any two honest agents in the network, based on the well-studied

connectivity properties of social networks that are expressed in the famous “six degrees of

separation”. Thus, the emergence of the effective global fungibility of CRC at the macro

level fundamentally relies on the social network formed by its users.

While we avoid technicalities in this text, it is helpful to introduce some basic notation

around transitive transfers for the following sections: Let S denote the state of the Circles

network at a given time, comprising the set of all existing accounts N , the trust relation-

ships between them, and the balancesB that each account holds of various individual CRC

currencies.

For two states, we write S →Ñ S’ if there exists a sequence of transitive transfers that

can be achieved by accounts in some set Ñ that take an initial state S to a final state S’.

Moreover, for any two subgroups of accountsNs, Nr ⊆ N , we writeB(Ns → Nr|S) to denote
the total amount of CRC trusted by at least one account in Nr , that are held by accounts in

13Note also that this path depends not only on the presence of trust connections but also on the available

balances of each participant. For instance, it is not sufficient that there exists a chain of trust from seller to

buyer, since users might not hold sufficient amounts of their own currency.

14



Ns in state S.

We can then define

T (Ns → Nr|S) := max
S′:S→NsS

′
B(Ns → Nr|S′)

That is, T (Ns → Nr|S) is the maximal achievable amount of CRC, trusted by at least one

account in Nr , that accounts in Ns can obtain by means of transitive transfers from an

initial state S. We’ll refer to this as the transferrable trusted balance of Ns for Nr starting

from S. For example, if in state S there are only two accounts, Alice and Bob, that each hold

10 of their own CRC (and nothing else), and Alice trusts Bob but Bob does not trust Alice,

then T (A → B|S) = 0 while T (B → A|S) = 10.

4.3 Resistance against malicious parties

At this point, some readers may wonder why Circles doesn’t simply issue fungible CRC

like a traditional currency, without relying on the trust rule. The answer is straightforward:

This approach enables universal access to Circles without a centralized gatekeeper, while

distributing issuance rights across the user base.

To see this, note that the absence of gatekeeping or KYC mechanisms in principle allows

users to create several accounts. If all CRC created by these accounts would be fungible

and have the same value, then in such away dishonest users could secretlymultiply the rate

at which they create CRC compared to honest users— those that use only a single account.

Such behavior would drive up prices and allow these users to increase their purchasing

power at the expense of others.

The rule of trust is designed the mitigate this risk. It limits the influence of malicious users

by restricting their economic participation to the degree that others in the network trust

their accounts. To illustrate this, consider the following example:

1. Bob trusts Alice

2. Alice makes a fake account FakeAlice and trusts that account

3. Alice has 5 AliceCRC

4. FakeAlice has 5 FakeCRC

5. Alice wants to buy something worth 5 CRC from Bob using FakeCRC

6. FakeAlice gives 5 FakeCRC to Alice and takes 5 AliceCRC from her

7. FakeAlice gives 5 AliceCRC to Bob
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In this example, Alice holds a second, fake account, allowing her to create 2 CRC per hour in

total. Bob, however, only trusts Alice’s primary account, which gives him limited exposure to

her network. Alice can therefore introduce 1 CRC per hour into the economy through Bob,

while the coins created by her second, fake account, remain immobilized and effectively

useless. Thus, Alice’s “effective” issuance rate remains at 1 CRC/h.

This example illustrates a more general property of Circles:

Relative Sybil resistance

LetM be a set of accounts controlled by a malicious party, F be a set of accounts

that trust at least one account in M (the “fooled” accounts) and R be the remain-

der of the network. Then, if accounts in M initially hold only their own funds, the

transferrable trusted balance of M for R is limited by the amount of CRC trusted

by accounts in R that are held by accounts in F ,

T (M → R|S) ≤ BT (F → R|S).
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Fig. 5: Visual depiction of Relative Sybil resistance. The influence of a network of malicious nodes

(red cluster) on the rest of the network (green cluster) is constrained by the total holdings of

trusted CRC held by boundary nodes (orange cluster), which connect the green and red clusters.

Since nodes inM need trusted CRC to impact the economy ofR, the above property limits

their impact by the degree to which M is trusted by outside accounts that connect M to

R. We call this property Relative Sybil resistance in reference a type of cyber attack known

as Sybil attack, in which an attacker creates several pseudonymous identities.

Relative Sybil resistance is Circles’ primary mechanism to safe-guard against users cre-

ating multiple accounts. Its driving force is the distribution of knowledge about others’

integrity among its user base: If everybody makes their beliefs about the integrity of oth-

ers public and if these beliefs are both accurate and sufficiently diversified among users,

then Sybil resistance emerges as a manifestation of the wisdom of the crowd.

The above result also shows that the users most exposed to a malicious attack are those

closest to the malicious nodes in the trust network. Moreover, ‘leaks’ in the form of honest

agents trusting malicious nodes tend to resolve themselves, since a) once the malicious

network depletes honest tokens, it can only acquire new tokens at a rate limited by the size

of its trust boundary, which generally is negligible compared to the entire honest network

andb) since accounts can always revoke trust, any detectedmalicious networks can quickly

be isolated.

Of course, the upside of multiplying one’s resourcesmight still tempt users into trying to to

maintain several accounts, even if that involves investing significant resources such as so-

cial engineering, etc. Since the lack of confidence of honest users into the protocol’s ability

to identify and exclude more sophisticated modes of exploitation would be detrimental to

the value and adoption of CRC, it is a major concern for the Circles team to provide tools

and intelligence to users, organizations and groups to help identify and untrust malicious

accounts. Moreover, as wewill discuss belowCircles Groups provide a vehicle for additional

layers of security if required.
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4.4 Emergence of global fungibility

We now consider how fungibility between individual currencies emerges by the properties

of the Circles trust graph. For our purposes, we here define operational fungibility as the

ability of users to have their CRC accepted broadly within the parts of the economy they

wish to transact with. A practical measure of this fungibility is the average fraction of their

CRC that users can spend. We define this formally as the average spendable fraction (ASF)

among a subset of nodes Ñ ⊆ N ,

ASF (Ñ |S) = 1

|Ñ |(|Ñ | − 1)

∑
n,n′∈Ñ,n 6=n′

T (n → n′|S)
B(n|S)

,

where B(n|S) are the total CRC holdings of n in state S. ASF values range from 0 to 1, with

1 indicating complete operational fungibility within the group Ñ , in state S. To illustrate,

consider the following simple examples (see Fig.6):

• In a fully connected network where every account trusts every others, ASF (Ñ |S) = 1

for any subset Ñ and any state S.

• In a network with trust paths between any two accounts in S and an equal balance of

their own individual currencies, we have, for any subset, ASF (Ñ |S) = 1.

• In a network, in which everybody only trusts a single account, ASF (Ñ |S) = 1 if and

only if S is such that only Circles of this single account are in circulation.

Fig. 6: Trust graphs with global fungibility: The complete graph in which everybody trusts another

achieves complete fungibility regardless of the distribution of CRC (left). The “ring graph” in which

every user is connected, achieves complete fungibility if all parties hold the same amount of their

own CRC (middle). The “star graph” formation, in which everybody only trusts a single user, will

achieve complete fungibility whenever only CRC of this user are in circulation (right).

Of course, these examples are highly simplified, and the actual state of the Circles network

will be more complex. However, we expect global fungibility to reach a sufficient level for

everyday economic exchanges within Circles, for the following reasons:

• High connectivity: Themore independent paths that connect two parties, the greater
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the volume of CRC that can flow between them (similar to water through a network

of pipes). Since trust connections will reflect social connections of people, and so-

cial networks are known for their high connectivity levels, we expect the number of

independent paths between any two users to grow with the size of the network.

• Local economics: Most users will interact regularly with only a small subset of the

entire network. We expect the average connectivity between users and their core

network to be significantly higher than with the overall network.

• Unstable bottlenecks: Transitive transfers require that all intermediate parties on a

path hold sufficient CRC balance. As such, some paths may temporarily become

unavailable, but the continuous CRC issuance for all active accounts helps quickly

“unblock” these bottlenecks, maintaining network fluidity.

• Diversified balances: As users accumulateCRC fromdifferent accounts, they diversify

their holdings. This diversity enables more paths for transitive transfers, since users

are likely to holdCRC froma range of trusted sources, enhancing transaction flexibility.

4.5 Liquidity Clusters, Exchange Rates and Flow potentials

In the previous section, we explore fungibility from an operational perspective. Here, we

shift our view to a token perspective. Instead of examining what accounts can pay one

another, we analyze how one type of CRC can be converted into another. We then show

that we can use this analysis to understand under which conditions the “value” of one user’s

CRC (in a sensemade precise below) will be higher than that of another user and when they

coincide. Our main result in this section is that value flows opposite to trust: Alice’s CRC

will, at equilibrium, be at least as valuable as those of all the people that trust her, and

conversely her CRC will be at most as valuable as those of any person that she trusts.

4.5.1 Liquidity Clusters

For any two accounts n, n’ ∈ N and some state S , we write

n �l,S n′

to indicate that in state S every account that initially holds some positive amount l > 0

of n-CRC can turn them into l n’-CRC. Moreover, for a given state S , we write n ∼l,S n’ if

n �l,S n’ and n′ �l,S n. A set of currencies created by accounts Ñ ⊆ N forms a l-liquidity

cluster in S if n ∼l,S n’ for all n, n’ ∈ Ñ .

It follows that fungibility within a group as defined in the last section implies that all cur-

rencies form a liquidity cluster under mild additional assumptions. Consider a set Ñ of

accounts and a state S such that ASF (Ñ |S) = 1. Assume that each account holds l of its

own currency. In this scenario, the currencies created by Ñ constitute a l-liquidity cluster.

This holds because, by assumption, there exists a series of transfers enabling any two ac-

counts in this set to exchange l of their own CRC for an equivalent amount of the other’s

currency.
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Conversely, the existence of liquidity clusters provides a lower bound for the degree of

operational fungibility of the system. Assume that Ñ forms a l-liquidity cluster in state S ,

and that every account in this set holds at least l of its own currency. Then one can show

that

ASF (Ñ |S) ≥ l

B̄S(Ñ)
,

where B̄(Ñ |S) = 1
|Ñ |

∑
n∈Ñ B(n|S) are the average total token holdings of accounts in Ñ .

4.5.2 Exchange Rates

The convertibility of currencies is also interesting from the point of view of the exchange

rates between individual currencies that emerge in the presence of a public exchange.

Essentially, stable exchange rates–where no party can extract arbitrage through transitive

transfers–are expected to reflect the fungibility order introduced above.

Specifically, let R(n → n′) denote an exchange rate between n-CRC and n’-CRC, given a

public exchange for different variants of CRC . This rate reflects how many units of n′-CRC

can be exchanged for one unit of n-CRC. We can show that, if R prevents arbitrage in state

S , it must take the form

R(n → n′) =
V (n)

V (n′)
,

where V is a value function satisfying the property that for any l > 0,

n �l,S n′ ⇒ V (n) ≥ V (n′).

This characterization provides valuable insights. It implies that currencies within the same

liquidity cluster will exchange at a 1:1 rate. In fact, it has the strong implication that, un-

der the mild assumption that all accounts hold some of their own currency, arbitrage-free

exchange rates will actually reflect trust:

Value at equilibrium flows opposite to trust

For any state S in which every account holds some of their own currency, then

exchange rates in the absence of arbitrage reflect the trust connections between

users: If n trusts n’, then

V (n′) ≥ V (n).

This implies that, at equilibrium, the value of the CRC created by any user will be
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• at least as much as each of the currencies of accounts that trust this user,

• at most as much as each of the currencies of accounts that this user trusts.

4.5.3 Flow potentials

Another implication of the above characterization of exchange rates is that the network can

naturally divide into clusters. To visualize this, consider the graph shown in Figure 7, which

depicts two “connected” clusters of users, referred to as Left and Right cluster respectively.

Within each cluster, all users are connected, with a single one-sided trust connection going

from one user in the left cluster to one user in the right cluster. In any state S where each

user holds some amount of their own currency, the currencies created in the Left and Right

cluster form two liquidity clusters. Under stable conditions, the currencies within each

cluster have uniform value, denoted as VL and VR for the left and right cluster, respectively.

Moreover, the trust structure ensures that VR ≥ VL.

Fig. 7: A trust graph illustrating two connected clusters with a single one-way trust connection

linking them. When each user holds some amount of their own currency, stable exchange rates

ensure that the currency issued by the right cluster has a higher or equal value than that of the

left one.

The existence of liquidity clusters and flow potentials imply the possibility that, instead of

a single globally fungible currency, a diverse set of currencies could emerge, each with

differing exchange rates. For the sake of conceptual simplicity, we have focused on the

scenario where global fungibility between all CRC emerges. However, it is important to note

that the liquidity cluster scenario is not just theoretically plausible, but also technically and

economically feasible.

This concludes our examination of the micro-level dynamics of Circles. We have demon-

strated how the simple rules of Circles generate a rich and adaptable structure. This struc-

ture achieves the dual objectives of providing universal access to the protocol while equi-

tably distributing the rights to issue money among users. Ultimately, this system supports

the emergence of one, or a few, globally fungible currencies at the macro level.
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5 Organizations and Circles Groups

Above, we introduce the rules of Circles for personal accounts and demonstrate how these

rules enable Circles to function as a currency issued by individuals and backed by their

trust connections. However, economies are not made up solely of individuals. To extend

Circles’ functionality, support a broader range of use cases and satisfy our requirements

of attractive money to allow shared-interest groups to organize themselves economically,

we introduce two special kinds of accounts: Organizations and Circles Groups.

Organizations are accounts that function much like human accounts, but with one key dif-

ference: they don’t issue their own currency. This reflects our conviction that Circles should

be a currency created exclusively by people. In practice, shops, vendors, and other non-

human entities will use Organization accounts to send and receive CRC.

Circles Groups (or simply Groups) are a more complex type of account with unique ca-

pabilities. Unlike Organizations, Groups do have their own currency. However, instead of

being created, as with human accounts, this currency is issued in exchange for personal

CRC from selected users—known as members of the Group.

Here is how it works:

1. Members’ CRC can be exchanged for newly issued Group-CRC at a 1:1 rate.

2. These exchanged CRC are stored in the Group’s vault as collateral, effectively remov-

ing them from circulation.

3. Holders of Group-CRC can redeem them at any time and at a 1:1 rate, against any CRC

in the vault, which effectively burns the redeemed Group-CRC.

This issuance policy balances trust-based issuance with a robust mechanism that ensures

the total circulating supply of CRC remains unchanged. See Fig. 8 for an illustration of this

process.

While Organizations are relatively straightforward in scope, Groups introduce powerful ca-

pabilities to Circles, enabling a wide range of applications. We now turn to explore their

primary use cases.
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Fig. 8: The base Circles Groups minting policy in action: Alice is a member of the Circles Group

G. Alice creates a Group-CRC by contributing one of her CRC as collateral, which is ‘locked’ into

the Group’s vault. Bob, who is not necessarily a member but happens to hold Group-CRC, then

redeems it in exchange for Alice’s CRC. Throughout this process, the total circulating supply of

CRC not locked in a vault remains unchanged.

5.1 Currencies for shared interest groups

People naturally organize around shared interests, locations, economic needs, and other

commonalities. Circles Groups provide a powerful tool for these communities to organize

themselves economically, using CRC as the base currency. There are many potential types

of Groups, including:

• Location-based (Humans of Berlin, …)

• Requirements-based (Humans with proven identity, Active users, …)

• Community-based (Humans of Urban Gardening Group XYZ, …)

• Enterprise-based (Humans of Gnosis, …)

• Event-based (Humans of DappCon 2024, …)

• Interest-based (Humans who play Chess, …)

• Education-based (Humans of Cambridge University, …)

• Earth-based (Humans of Gaia, …)

It’s worth noting that multiple Circles Groups can target the same segment. For example,

both Proof of Humanity and WorldID might use similar admission criteria but implement

them differently. Since anyone can create a Circles Group and there is no central over-

sight or orchestration, this diversity is a natural consequence of the system’s openness.

Moreover, Groups can be trusted by both human accounts and other Group accounts. The
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issuance mechanism for Groups then ensures that Group membership is effectively tran-

sitive: For instance, if A is a member of Group G and G is a member of Group H, then A can

issue H-CRC as if they were a member of H. This transitivity enables Groups to organize

into sub-Groups or larger federations.

What advantage do Circles Groups gain from issuing their own currency? First and fore-

most, it gives shared-interest groups access to monetary tools to pursue these interests.

We foresee a plethora of different applications for Group currencies, such as

• local and complementary currencies

• loyalty programs that require minimum levels of activity to enjoy certain benefits

• voting and funding mechanisms for DAOs

• liquidity pooling

• safety-critical applications that require highly credible collateral.

While some of these applications can be expressed using just the default rules of Circles

as discussed above, some require additional logic. For this reason, Groups can extend and

build on the default issuance policy described above by calling external smart contracts at

various points in the issuance and redemption process. Examples of such custom policies

are

• limiting the total supply of Group-CRC

• dynamically adjusting supply based on network state or other inputs

• require exogenous collateral for issuance

• creating lock-ins to restrict redemption

• enforcing specific identification criteria for membership or issuance

• automatically granting or revoking membership based on predefined requirements.

Despite this flexibility, the base rules of Circles always apply and connect theCirclesGroups

and their economics.

5.1.1 Active and Passive Circles Groups

Membership in Circles Groups is defined by the Group (whose actions are carried out by

one or several Group Admins) by extending trust to an account, rather than the other way

around. Since Circles imposes no restrictions on who an account can trust, we expect that

users will be members of various Circles Groups without actively seeking membership. For

example, a location-based Group might automatically trust all users in a specific region.

We call such Groups passive Circles Groups because membership is extended without

requiring the user’s involvement. These Groups may have little practical impact on users

who don’t engage with them, as the trust is unilateral and poses no risk. In contrast, active

Circles Groups require users to actively participate, apply, or meet certain conditions to

gain and retain membership. Examples include cooperatives, DAOs, or other enterprise-

based Groups.
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5.2 The resilience-efficiency tradeoff

An important purpose of Groups is that they provide a way for members of a Circles-based

economy to navigate the tradeoff between monetary efficiency and resilience. By effi-

ciency, we mean minimizing overhead, frictions, and transaction costs when using Circles.

By resilience, we refer to the system’s ability to resist exploitation by malicious parties and

free-riders, as well as the capability to shield parts of the economy from shocks or crises

in another.

The tradeoff is a well-known concept in mainstream economics, especially in the macroe-

conomics of international finance: Using a single currency across multiple markets (or to a

lesser extent, by linking different markets via fixing the exchange rates of their respective

domestic currencies, as in the gold standard) can reduce frictions in trade and labour mo-

bility between thesemarkets, increasing their overall efficiency. However, this comes at the

cost of resilience: without independent monetary policy tools, individual markets are more

vulnerable to crises spilling over from others, which might have been mitigated or avoided

with localized currencies.

Circles, at its core, is designed with resilience inmind. Eachmember has their own personal

currency, which is, by default, non-fungible with others. Trust connections between ac-

counts can be revoked or altered at any time, offering individuals robust tools to safeguard

the value of their personal CRC against shocks such as the discovery of a Sybil network.

The resilience-first design of Circles comes with a tradeoff in efficiency. Seemingly simple

transactions at the macro level can require significant computational effort at the micro

level to identify the paths for transitive transfers. Moreover, newcomers may face chal-

lenges in quickly having their CRC accepted by others, creating barriers to seamless par-

ticipation.

Groups address these challenges by offering a ‘fast lane’ to efficiency. For example, con-

sider a Group that automatically grants membership to any account that is not obviously a

bot. In this scenario, users could exchange their individual CRC for the Group’s Group-CRC,

creating a single, fully fungible currency with significantly lower transaction costs (even at

the micro level) and easier onboarding for new users. However, this efficiency comes at the

cost of reduced resilience. A low barrier to entry would make the Group an easy target for

malicious parties. While this represents an extreme example, in practice, Groups are likely

to span a spectrum of efficiency and resilience. Users can then choose to hold a mixture

of Group-CRC and individual CRC based on their preferences and risk tolerance.

6 Conclusion

With Circles, we have set out to propose an answer to the question: What does a currency

have to look like in order to be adopted by people in a multipolar, decentralized world, not

by virtue of necessity, but by virtue of its attractive properties alone? Wehave argued that

a currency should satisfy three necessary conditions to qualify as a good answer to this

question: It should be universally accessible, its issuance mechanism should be decentral-
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ized, and it should prevent any group from maintaining persistent control over the money

supply. We have demonstrated that Circles satisfies these criteria by leveraging the exist-

ing social trust connections between people. Additionally, we introduced complementary

structures, Circles Groups and Organizations, to facilitate the adoption of Circles among

communities with shared interests and goals.

History has seen many proposals for currencies, mainstream and alternative, come and

go. Unsurprisingly, the currencies most likely to succeed have typically been those backed

and supported by the institutions with the most political and military power. Against this

backdrop, any new currency, including Circles, faces an uphill battle. Yet, the 21st cen-

tury has shown us glimpses of profound transformation in the nature of money, driven by

digitization and decentralization. Circles represents the next step in the evolution of this

movement, reinventing money for a decentralized world: Truly global, inherently resilient,

free from control by any one entity, and built to stand the test of time.
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8 Disclaimer

This whitepaper is for informational purposes only and is not intended to constitute, nor

should it be construed as, any form of financial, legal or investment advice. This whitepa-

per is not an offer or solicitation to purchase tokens. The project is open source and each

user is responsible for creating their own CRC. While we aim to provide accurate and up-

to-date information, we do not guarantee the accuracy, completeness or suitability of the

content. This whitepaper has not been reviewed or approved by any regulatory authority

and readers should do their own research and ensure they inform themselves of, and com-

ply with, relevant laws, regulations and tax requirements that apply in connection with their

use of the Circles Protocol or CRC.

9 Appendix

In this appendix, we formally derive the results presented in the paper.

9.1 Macro level basics

We begin by setting up the basic notation. We consider a finite set N of all users that have

been active at some point in the history of the network. We model time as a non-negative

discrete parameter t ∈ N+. Let θ : N×N+ → {0, 1} be the indicator function whether a given
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user creates at a given time. Under the assumption that all active users in the economy

create while they are active, we denote as Nt = {n ∈ N : θ(n, t) = 1} the population at

time t and as st = |Nt| its size. Moreover, for any subset of accounts Ñ ⊆ N , we denote

Nt(Ñ) = |Nt ∩ Ñ | as the active minting subset of these accounts at time t.

Let r > 0 be demurrage rate (in units of t) and a the amount of CRC that an individual

member of the economy can create per time period (i.e. in our case r is 7% p.a. and a is

1 CRC/h). The total value of money created at some time t′ between (and including) two

periods t and t’, by any set of accounts Ñ , is

Mt,t′(Ñ) =

t′∑
τ=t

asτ (Ñ)ρ(t
′−τ),

where we introduced ρ = (1− r) for notational convenience. We writeMt = M0,t(N) for the

total money supply at period t (we assume that money is always created as the first thing

in every period, meaning the money created at t is always at users’ disposal in that very

period). Thus, M0 = as0, M1 = as0ρ+ as1 etc. For any time and set of accounts, the money

supply obeys the recurrence relation

Mt,t′(Ñ) = Mt,t′−1(Ñ)ρ+ ast′(Ñ).

A special case of the above is given by the situation in which all members of the set create

at every time, i.e. Nt(Ñ) = Ñ for all relevant times. In this case we have

Mt,t′(Ñ) = a|Ñ |η(0, t′ − t, ρ),

where we defined

η(a, b, c) :=

b∑
k=a

ck.

This special case yields a geometric series and is therefore easy to evaluate analytically. In

particular, using standard results on geometric series, we have for ρ 6= 1,

η(0, b, ρ) =
1− ρb+1

1− ρ
.

This implies that for any single account n ∈ N that creates continuously once they join the

economy at some time t,

Mt,t′(n) =
a(1− ρt

′−t+1)

r
=

a

r
+O(e−(t′−t))

In the case of Circles, which applies the demurrage in 24 hour intervals, a = 24 and r =

1− 0.931/365.25 which results in the limit of 120804 CRC mentioned in the main text.
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9.2 Fair access to supply

We derive the a generalized form of equation (1) in the main text. For this, let B(n)t denote

the total CRC balances of some account n ∈ N at time t. If this user creates throughout,

then for any later time t’ ≥ t, we have

Bt′(n) = Bt(n)ρ
(t′−t) + aη(0, t′ − t, ρ)

Consequently, writing ∆t = t’− t,

Bt′(n)

Mt′
=

Bt(n)ρ
∆t + aη(0,∆t, ρ)

Mtρ∆t + a
∑t′

τ=t sτρ
t′−τ

=
η(0,∆t, ρ)∑t′

τ=t sτρ
t′−τ

(
αt,t′ + 1

γt,t′ + 1

)
=

1

N̄t,t′(ρ)

(
αt,t′ + 1

γt,t′ + 1

)
,

where we defined

αt,t′ =
Bt(n)ρ

∆(t)

aη(0,∆t, ρ)
≤ Bt(n)ρ

∆(t)

a
,

γt,t′ =
Mt(n)ρ

∆(t)

a
∑t′

τ=t sτρ
t′−τ

≤ Mt(n)ρ
∆(t)

aminτ :t≤τ≤t′ sτ
,

as well as the time-discounted average population size

N̄t,t′(β) =

∑t′

τ=t sτβ
t′−τ∑t′

τ=t β
t′−τ

=
t′∑

τ=t

wτsτ , wτ =
βt′−τ∑∆t
τ=0 β

τ

for somediscount-factor β. This is a formofweighted average for the activelyminting pop-

ulation between times t and t’, in which population sizes farther in the past are weighted

less. For β = 1, this is just the unweighted average population over the time window. To

interpret the above equality, we note that both αt,t’ and γt,t’ are upper bounded by exponen-

tially decaying terms and hence will vanish over longer time windows. This implies that any

member’s share in the total money supply converges, over time, to the time-discounted

average population size (which is itself a moving target of course) with discount rate β = ρ,

at least if that member only creates CRC and does not participate in further economic

transactions.

Equation (1) presented in the main text then emerges as a special case in which i) the

population is constant and ii) the user starts without any initial balance, Bt(n) = 0, so that

αt,t’ = 0.
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9.3 The inflationary view

In this section, we formally introduce the inflationary view and discuss how it differs. For

this, let us introduce another currency, ICRC, whose issuance follows the same rules as

that of CRC, with the following changes: ICRC is not subject to demurrage and accounts

can create an increasing amount of ICRC. Formally, the issuance rate of ICRC at time t is

at = a(1 + i)t for some inflation rate i. The total amount of ICRC created by some set Ñ up

until time t then is

M̃t(Ñ) =
t−1∑
τ=0

sτ (Ñ)aτ

By construction, the total supply of ICRC diverges over time, under the assumption that

st > 1 at all times. However, to support our claims the real economics of the inflationary

view coincide, in the sense that principle A and principle B are still satisfied, note that under

the assumption that the inflation rate is chosen such that (1 + i) = ρ−1

ρ(t−1)M̃t(Ñ) = aρ(t−1)
t−1∑
τ=0

sτ (Ñ)ρ−τ = Mt(Ñ)

This is true regardless of t or the minting schedule of the accounts in Ñ . This relates the

money supply of two economies, one using ICRC and one using CRC, that follow the same

minting schedule. An immediate implication is that the relative contribution to the total

money supply by any two Groups would be the same: That is, for any Groups N1, N2 ⊆ N ,

any minting schedule and any time t,

Mt(N1)

Mt(N2)
=

M̃t(N1)

M̃t(N2)

Moreover, a similar statement holds true for the development of balances in the absence of

transactions, in that a user will see their share in the total money supply develop in exactly

the same way, regardless of which of the two views we’re using: To see this, consider again

two economies whose user base is the same and follows the same minting schedule but

uses ICRC and CRC respectively. Let B̃t(n) denote the ICRC balance of an account n ∈ N in

the first economy, at some initial time t and let B̃t’(n) denote the ICRC balance of n if in the

time window (t, t’) they only create ICRC but do not transact with other accounts. Similarly,

let Bt(m) and Bt’(m) denote the initial and final balances of an accountm ∈ N for the other

economy under the same conditions. Then we have that,

B̃t(n)

M̃t

=
Bt(m)

Mt
⇒ B̃t′(n)

M̃ ′
t

=
Bt′(m)

M ′
t

that if the two accounts hold the same percentage of the total money supply in these

economies, then the percentage of their holdings will evolve in just the same way. This

follows from
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B̃t′(n)

M̃ ′
t

=
B̃t(n) + aη(t, t′, 1 + i)

M̃t + a|N |η(t, t′, 1 + i)

=
Bt(n)ρ

−t + aη(−t′, t, ρ)

Mtρ−t + a|N |η(−t′,−t, ρ)

=
Bt(n)ρ

∆t + aη(0,∆t, ρ)

Mtρ∆t + a|N |η(0,∆t, ρ)

=
Bt′(n)

M ′
t

,

where we used that ρtM̃t = Mt due to the same minting schedules up until time t, that, by

the above assumption, we consequently have ρtB̃(n)t = Bt(n) and also that (1 + i) = ρ−1.

Since the real economic relevance of the balance is not dependent on the absolute number

of tokens, ICRC or CRC, held but by their share in the total money supply, this means that

the purchasing power of accounts in economies that differ only with respect to whether

they use ICRC or CRC is the same, as claimed. Moreover, of course, this also means that the

bounds we established in the last section about the convergence to the average, directly

apply to the inflationary picture as well.

9.4 The value of seigniorage

In this sectionwederive the claimswemake in themain text about the value of the seignior-

age in equilibrium. For simplicity, we assume an economy with a single perishable good

(meaning all of the available good for a single period must be produced and then con-

sumed in that period) and that CRC is the only available currency. We denote as pt > 0 the

price of this good in units of CRC and as ct(n) ≥ 0 denote the amount of the good that an

account n ∈ Nt consumes at time t. We say that this simple economy is in equilibrium at

time t if both goods and money markets clear, that is, all of the available good for this pe-

riod gets consumed and the price is such that the total demand for money equals the total

supply (for a Walrasian equilibrium we’d also assume that users choose the consumption

that maximizes their utility given the price but here we don’t consider utilities explicitly).

The seigniorage zt at time t (which is the same across users), is simply

zt =
a

pt

since this is the value created (in units of goods) by creating a units of CRC (assuming neg-

ligible issuance costs).14 Then the average contribution of the seigniorage to consumption

across users at t is, in equilibrium

14In this section, we model the issuance of CRC as a fiat currency as the only source of seigniorage. In

principle, users can also provide loans using their CRC and derive seigniorage from interests on these loans.

Hence, a more complete model would take into account both of these sources of seigniorage. We leave such

an extension to future work.
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zt
c̄t

=
sta

pt
∑

n∈Nt
ct(n)

=
(Mt −Mt−1ρ)

VMt

where for the nominator we used the recursion relation for the total money supply and for

the denominator we used the fact that, in equilibrium,
∑

n∈N ct(n) = V Dt/pt = VMt/pt ,

with Dt the total demand for money and V its velocity, which we here assume, for simplic-

ity, to be constant over time (at least within the considered time window). The first equality

links the consumption to the total money demand through the equation of exchange, un-

der the assumption that all consumed goods are purchased by its consumers (a standard

assumption in economic models that the fraction of goods consumed by the producers

of that good is negligible), while the second equality equates money demand and money

supply by the assumption of equilibrium. This shows that, in this very simplified model,

the contribution of seignorage to average consumption equals the relative increase of the

money supply, after applying demurrage.

To further evaluate this, we now introduce the assumption that the active population grows

at a constant rate g ≥ 0, so that st = (1+ g)ts0 for some initial population s0 > 0. Under this

assumption,

Mt = as0ρ
tη(0, t, ζ)

= as0ρ
t (ζ

t+1 − 1)

(ζ − 1)

for ζ = (1+g)
ρ > 1. Plugging this into the above equation yields

zt
c̄t

=
(ζt+1 − ζt)

V (ζt+1 − 1)

=
(1− ζ−1)

V (1− ζ−(t+1))

=
1

V (1− ζ−(t+1))

(r + g)

(1 + g)
.

Therefore, under the various simplifying assumptions we make, the relative contribution of

the seigniorage to the average consumption converges to the claimed ratio at an expo-

nential rate.

9.5 On the price stability of CRC - An OLGmodel

In this section, we provide a simple overlapping-generations (OLG)model of a Circles based

economy. One noteworthy feature is that the presence of demurrage leads to a stabilization
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of the price level in a competitive equilibrium, despite a positive growth of the economy.

The OLG model, introduced by Paul Samuelson, is one of the most celebrated and foun-

dational models of an economy in the presence of money in that it captures a variety of

monetary phenomena while being analytically tractable. While a full-blown exposition of

thismodel is beyond the scope of this whitepaper, we here define all the essential structure:

An OLG economy consists of generations of people, each of which lives for two periods and

each of which overlaps for one period with the previous generation (when they are young

and the previous generation is old) and for one period with the next generation (when they

are old the next generation is young). When young, every user receives some fixed quan-

tity y of a perishable consumption good (which can be interpreted as food or working time

depending on the context). Every agent’s utility depends on the amount of the consump-

tion good that they consume in each of the two periods for which they are alive. Since the

good by assumption perishes within a single period, agents cannot consume any of their

own endowed good when they are old. The introduction of money solves this problem as

it allows agents to sell a portion of their endowment when young and then purchase some

of the good endowed to others when old.

Let us introduce the necessary quantities formally. Note that the details of the model

differ from those of the macro level above, since the assumption of agents that only live

for two periods requires a slight adaption. Let Yt and Ot denote the number of young

and old people in period t, respectively. By construction, Ot = Yt−1. Let CY (t) denote the

aggregate amount of the good that is consumed by the young in period t and similarly

CO(t) for the old. A consumption schedule (CY (1), CO(1), CY (2), . . . ) for this economy is a

specification of these amounts for the whole of history. A consumption schedule is feasible

if for all times,

CY (t) + CO(t) ≤ yYt.

This expresses the necessity that the old and young together cannot consume more than

the total endowment. Moreover, let Pt denote the price for one unit of the good in terms of

units of money and letMO(t) denote the amount of money held by the old at t. In terms of

these quantities, a consumption schedule is said to be affordable given prices and distri-

bution if, for all times,

PtCO(t) ≤ MO(t).

This “cash-in-advance” constraint simply states that the old can only purchase as much of

the good as their budget allows. Finally, a consumption schedule is said to be optimal at

given prices and distribution if it maximizes the utility of all agents across the affordable

consumption schedules. A crucial concept for an OLG is that of a competitive equilibrium

(CE). This is defined as a tuple of

• consumption schedule

• a sequence of prices (Pt)t
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• a sequence of money distributions (MO(t))t

such that the consumption schedule is both feasible and optimal at given prices and distri-

bution and that markets clear (i.e. that all of the available good gets consumed or sold and

that the demand for money equals its supply). A CE is moreover a steady-state CE if CY

and CO are constant over time. Competitive equilibria are relevant insofar as they describe

stable trajectories of the economy that are consistent with the incentives of the individual

agents if understood as utility maximizing rational agents.

The following is an OLG model for a Circles-based economy with a steady growth-rate of

the economy: We assume that Yt = (1 + g)tY0 for some initial set of young people Y0. We

moreover assume that newly createdmoney gets distributed in a lump-sum fashion across

all old users at some rate a. That is, the total money supply available at the beginning of

time t is

M̄t = M̄t−1ρ+Ota

with M̄0 = 0.15 We then have the following fact.

Existence of steady-state CE with stable prices

For the OLG model of the Circles economy and under the additional assumption

that all agents, across periods, share the same utility function that is monotoni-

cally increasing in the amount of goods consumed, any steady-state CE needs to

have prices that satisfy

Pt+1

Pt
=

(1− ζ−(t+1))

(1− ζ−t)
,

where ζ = (1+g)
ρ > 1.

Proof Sketch: By the market clearing condition and the monotonicity of the utility

functions, any consumption schedule that is part of a CE will have to saturate the

feasibility and affordability constraints as well as M̄t = MO(t). The feasibility con-

straint is saturated by definition of the market clearing condition, the affordabil-

ity constraint is saturated since agents can never maximize their utility by leaving

money unspent and, as a consequence of this fact paired with the fact that new

money is distributed to the old, the totality of the money supply is in the hands of

the old. Moreover, by the steady-state condition and the identity of the utility func-

tions, we have that consumption amounts are time-independent, i.e. CY (t) = cY Yt

15Note that this is different from the total money supply Mt presented above. This is because here, we only

provide money to the old. The reason is that in an OLG context, we consider the whole life of a user in only

two periods. As such, we assume that users start with very little CRC and for them to be able to accumulate

significant CRC after several decades.
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and similarly for the young. Together, this results in the identity

Pt =
M̄t

Yt(y − cY )
.

Moreover, using reasoning exactly analogous to the last section, we find that

M̄t = aY0ρ
t−1η(0, t− 1, ζ)

= aY0ρ
t−1 (ζ

t − 1)

(ζ − 1)

for ζ = (1+g)
ρ > 1. Using this and that Yt = (1 + g)tY0, we obtain

Pt+1

Pt
=

YtM̄t+1

Yt+1M̄t

=
ζt+1 − 1

ζ(ζt − 1)

=
(1− ζ−(t+1))

(1− ζ−t)
,

which converges to 1 at an exponential rate in t.

Note that the above OLG model assumes constant per capita output, through fixing the

constant y. As such, it is assuming that output, defined as Yty, grows exactly proportional

to the size of the population. While dropping this assumption would often lead to the non-

existence of a steady-state CE, it is intuitively clear how the results would change: Longer

term trends in per-capita output would be reflected in longer term trends in price levels,

with increasing per-capita output leading lower prices and decreasing per-capita output

leading to higher prices.

9.6 Micro level basics

We now turn to the micro level description of Circles. We first set up the basic notation.

Abstracting, for the moment, from the fact that individual nodes create their own currency,

we consider a world consisting of accounts N and a set of non-fungible currencies Kthat

are in circulation. We describe the instantaneous state of the system at any time as the

tuple

S = (G,B),

where G ∈ {0, 1}|N |×|K| is the adjacency matrix of the trust graph, with Gnk indicating

whether user n trusts currency k at time t, and B ∈ R|N |×|K|
+ is the balance matrix, with Bnk
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indicating the amount of currency k that account n holds in this state. The state space S
of Circles is then given by {0, 1}|N |×|K| ×R

|N |×|K|
+ . We also denote as

KG(n) = {k ∈ K|Gnk = 1}

the set of trusted coins for a given account and KG(Ñ) = ∪n∈ÑKG(n).

9.6.1 State transitions - Definition

Let us now turn to state transitions that are allowed by the Circles protocol. For any two

states S, S’ ∈ S and any n ∈ N we write S →n S’, if a transition from S to S’ is can be

brought about by account n in Circles, using a combination of the following four possible

types of actions. In the following Eij denotes a matrix (of appropriate size) with all zero

entries except 1 in entry ij:

1. Trusting: Any account can trust any of their untrusted accounts.

S →n (G′, B)

if G’ = G+ Enk for some k ∈ K .

2. Untrusting: Any account can untrust any of their trusted accounts.

S →n (G′, B)

if G’ = G− Enk for some k ∈ K .

3. Direct transfer: Any account can send any of their balance to any other account as

a direct transfer.

S →n (G,B′)

if B′ = B + b(En′k − Enk) for some b ≥ 0, k ∈ K and n’ ∈ N .

4. Trust swap: Accounts can swap tokens using the rule of trust.

S →n (G,B′)

if B′ = B + Enk − En′k′ for some k, k′ ∈ K and n’ ∈ N such that Gn’k’ = 1.

The above also exhaustively specify the relation →n. That is, by definition S →n S′ only if

the state transition can be brought about by n bymeans of a sequence of (any combination

of) the above operations.
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Definition: Achievable transition

For any set of accounts Ñ ⊆ N we write S →Ñ S’ and say that a transition from S

to S’ can be achieved by accounts Ñ if there exists an I ∈ N, a sequence of states

(Si)
I
i=0 and a sequence of accounts (ni)

I−1
i=0 such that ni ∈ Ñ for all i, S0 = S, SI = S’

and

Si →ni Si+1, i = 0, . . . , I − 1

The following decomposition result makes it easier to think about the complex transitions

that are possible and will be frequently invoked in proofs in later sections.

Decomposition of transitions

Consider any two states S = (G,B), S’ = (G′, B′) ∈ S and a subset Ñ ⊆ N . If

S →Ñ S’, then there exist states S1, S2, S3 ∈ S such that

S →Ñ S1 →Ñ S2 →Ñ S3 →Ñ S’,

where the first transition is achieved bymeans of trusting actions only, the second

transition is achieved bymeans of trust swaps only, the third transition is achieved

by means of direct transfers only and the fourth by means of untrusting only.

Proof: Let (Si)
I
i=0 be the sequence of states that exist by assumption such that

S0 = S, SI = S′ and

Si →ni Si+1, i = 0, . . . , I − 1

and where each transition is achieved by means of one of the four basic kinds of

actions describe above. We first note that the set of possible state transitions that

can be achieved by accounts in Ñ by means of trusted swaps and direct trans-

fers can only be enlarged by those accounts trusting one another and decreased

by untrusting one another and that more over this set is independent of the trust

connections of accounts in Ñ into the remainder of the network. As such, we can

assume, without loss of generality, that S1 = (Ḡ, B), where Ḡ has a trust connec-

tion for all members in Ñ and otherwise equalsG, while S3 = (Ḡ, B’). In other words,

we can assume that in the first step, all accounts in Ñ trust one another and then,

in the last step, they untrust one another to achieve the trust graph G’ of the fi-

nal state S’. We now turn to the intermediate transitions. For this, assume that

there exists some i < I − 1 such that the transition Si →ni Si+1 corresponds to

a direct transfer of some amount bi of ki-tokens from ni to some account n′
i and

Si+1 →ni+1 Si+2 corresponds to a trust swap in which ni+1 swaps some amount bi+1
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of ki+1-tokens with another party n′
i+1 in exchange for the same amount of k′i+1

tokens, with ki+1 6= k’i+1. Then in the following we show that that the transition

Si →n Si+2 could also have been achieved by either first applying a trust swap and

then a two direct transfers or by means of three direct transfers. To see this, we

distinguish two cases:

1. n′
i 6= n′

i+1 or ki 6= k’i+1: In this casewe can simply invert the the two operations.

2. ki = k’i+1 and n′
i = n′

i+1: We denote n’ = n′
i = n′

i+1 and k = ki = k’i+1 and

k’ = ki+1. In this case ni sends k-tokens to the other party n’and then ni+1ex-

changes some of that currency back later. The reason we cannot simply ex-

change the operations in this case is that n’ might not initially have sufficient

balance of the k token for the swap. However, we can construct alternative

operations that achieve the same effect: If bi ≤ bi+1, then ni+1 can first swap

an amount bi+1 − bi of their k
′ tokens for k tokens and then conduct a direct

transfer of an amount bi of k’ tokens to n’, while ni transfers bi of k tokens to

ni+1. This results in the same state as the original operations above and we

are guaranteed the possibility of these transfers, since by assumption of the

existence of the two operations above, B
(i)
n’k + bi ≥ bi+1 and B

(i)
ni+1k′

≥ bi+1 and

B
(i)
nik

≥ bi. If bi > bi+1, then we instead replace the above operations by means

of three direct transfers: ni transfers an transfers an amount bi+1 of k tokens

to ni+1 as well as an amount bi − bi+1 of k tokens to n’, while ni+1 transfers

an amount bi+1 of k’ tokens to n’. We are guaranteed the possibility of these

transfers by B
(i)
nik

≥ bi and B
(i)
ni+1k′

≥ bi+1.

The above establishes that for any sequence of transfers that involves a direct

transfer followed by a trust swap, there exists either a trust swap followed by two

direct transfers or three direct transfers that achieves the same transition. By iter-

atively applying this insight, we can always generate a sequence of states (S̃i)
I
i=0

such that S̃0 = S, S̃I = S′ and in which there exists some i∗ such that for all i ≤ i∗,

all corresponding state transitions are generated by transitive transfers and for

all i > i∗, all corresponding state transition are generated by direct transfers, as

claimed.

9.6.2 State transitions - Characterization

We now study the structure of the relation →Ñ . To this end, we first define

SÑ (S) := {S′ ∈ S : S →Ñ S}

as the reachable state space for a given set of accounts and initial state S. We also intro-

duce some additional notation: We denote, for any state S = (G,B) ∈ S , any set of nodes

Ñ ⊆ N and any set of currencies K̃ ⊆ K ,
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B(Ñ , K̃|S) :=
∑

n∈Ñ,k∈K̃

Bnk

as the total balance of K̃ coins held by members in Ñ (we drop the explicit mention of

the state if it’s clear from the context). For instance, B(n,K) equals the total token hold-

ings of a single account, B(N, k) equals the total supply of currency k in state S , while

B(N\{n},KG(n)) is the total supply of tokens trusted by some account n that are not al-

ready held by this account. Finally, for two sets N1, N2 ⊆ N , we denote as

BT (N1 → N2|S) := B(N1,KG(N2)|S)

the trusted balance ofN1 towardsN2, that is, the total amount of currency held by accounts

in N1 that are trusted by at least one account in N2 (in the main text, we dropped the

subscript T for sake of simplicity). We write BT (Ñ |S) ≡ BT (Ñ → Ñ |S).

Necessary conditions

Using this notation, we can establish some necessary conditions for state transitions from

observation:

1. The total amount of coins in circulation remain constant:

S →Ñ S′ ⇒ B(N, k|S) = B(N, k|S′) ∀ k ∈ K

1. The balance of the “signers” cannot increase and that of non-signers in the network

not decrease:

S →Ñ S′ ⇒ B(Ñ ,K|S) ≥ B(Ñ ,K|S′)

S →Ñ S′ ⇒ B(N\Ñ ,K|S) ≤ B(N\Ñ ,K|S′)

1. Trusting and untrusting alone cannot affect the trusted wealth of the non-signers:

(G,B) →Ñ (G′, B) ⇒ BT (N̄ |S) = BT (N̄ |S′), ∀ N̄ ⊆ N\Ñ

1. The total trusted balance of the non-signers cannot decrease:

S →Ñ S′ ⇒ BT (N̄ |S) ≤ BT (N̄ |S′), ∀ N̄ ⊆ N\Ñ

This last property is what we refer to as the Conservation of trusted balance in the main

text.
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Sufficient conditions

An obvious question is whether these necessary conditions are also sufficient. That is, can

any state that satisfies the above necessary conditions also be reached? For the case that

Ñ = N , the answer is affirmative, as the following argument shows.

Fact: Reachable state set for whole network

For any state S ∈ S ,

SN (S) = {S′ ∈ S :
∑
n

B′
nk =

∑
n

Bnk,∀k ∈ K}.

Proof Sketch: Let B’ be any final distribution of the coins that satisfies the above

conservation property. Then this state can be reached as follows from the initial

state S: First, all parties send their whole balance to a single account via direct

transfer. Then, this account transfers the amounts B’nk to every party n via di-

rect transfer. Since these direct transfers are independent of the trust graph, any

combination of trusting and untrusting is possible.

For the case that the whole network is involved in the state transition, the reachable state

set is therefore simple to characterize. However, for the case of a generic set of signers

Ñ , we are not aware of a similarly simple characterization and believe that it does not exist

without imposing further structure. It turns out, though, that the absence of a simple ana-

lytical characterization of the reachable state set is in practice not problematic, as we care

primarily about the ability of parts of the network to pay other parts. It turns out that we

don’t need to fully characterize the relation →Ñ in order to understand this ability.

9.7 Transferrable trusted balance

As part of trusting an account, users commit to accept tokens they trust as viable payment

for goods they price in CRC. As such a keymeasure of liquidity in Circles in any given state S

is the total amount of tokens that a sender set of accounts canmanage to transfer over to a

(disjoint) receiver set of accounts, such that the for each token sent, at least one account in

the receiving set trusts that token. We call this quantity the transferrable trusted balance

and define as follows: For any Ns, Nr ⊆ N such that Ns ∩Nr = ∅,

TG(Ns → Nr|S) := max
S’:S→NsS’

BT (Nr|S’)−BT (Nr|S)

In the following we’re going to study the properties of this key quantity and in fact will be

able to completely characterize its value as a function of the balances held by accounts in

state S. First, we note that TG is equivalent to the total amount of tokens that the senders

can obtain that are trusted by the receivers:
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Equivalence of obtainable and transferrable trusted balances

For any disjoint sets Ns, Nr ⊆ N , the transferrable trusted balance is given as

TG(Ns → Nr|S) = max
S’:S→NsS’

BT (Ns → Nr|S’).

Proof Sketch: We first show LHS ≥ RHS: Let S̃ ∈ argmaxS’:S→NsS’
BT (Ns → Nr|S’)

and let S’ be the state that results when we start in S̃ and accounts in Ns transfer

all the trusted amount BT (Ns → Nr|S̃) to some (arbitrary) account inNr (via direct

transfer. Then S →Ns S’ by assumption so that

TG(Ns → Nr|S) ≥ BT (Nr|S′)−BT (Nr|S)
= BT (Ns → Nr|S̃) +BT (Nr|S̃)−BT (Nr|S)
≥ BT (Ns → Nr|S̃),

where we the conservation of trusted balance property in the last step.

We now show LHS≤ RHS: Let S̃ ∈ argmaxS’:S→NsS’
BT (Nr|S’). By the decomposition

of transitions that we showed above, there exist states S1 and S2 such that

S →Ns S1 →Ns S2 →Ns S̃

and such the three transitions occur by means of only trusting and untrusting,

trust swaps and direct transfers respectively. Note that the trusting and untrusting

transition cannot change trusted balance of Nr , since Ns and Nr are disjoint, so

that BT (Nr|S1) = BT (Nr|S). For the second transition that consists of a sequence

of trusted swaps, assume that this sequence includes swaps that decrease the

amount of tokens trusted by accounts in Nr that are held by accounts in Ns. By

skipping all such swaps and all subsequent swaps that “rely” on this swap (in the

sense that some of the incoming tokens are later sent away using other swaps), we

obtain a final state S′
2 with the property that

BT (Ns → Nr|S′
2) ≥ BT (Ns → Nr|S2) +BT (Nr|S2)−BT (Nr|S1),

i.e. all trusted balance that would be transferred to Nr under the swaps leading to

S2 is now retained by Ns. Using this fact, together with the fact that BT (Nr|S̃) ≤
BT (Ns → Nr|S2) +BT (Nr|S2) by virtue of the direct transfer, we obtain
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max
S’:S→NsS’

BT (Ns → Nr|S’) ≥ BT (Ns → Nr|S′
2)

≥ BT (Ns → Nr|S2) +BT (Nr|S2)−BT (Ns|S1)

≥ BT (Nr|S̃)−BT (Nr|S1)

= BT (Nr|S̃)−BT (Nr|S)
= TG(Ns → Nr|S).

9.7.1 Transferrable trusted balance as maximum flow problem

In this section, we show that the problem of determining the transferrable trusted balance

can be phrased as a maximum flow problem. This is great because this problem is one of

the best-understood optimization problems and there exist efficient algorithms to solve

them in practice. The problem involves finding the maximum amount of flow that can be

sent from a source node to a sink node in a directed graph, subject to capacity constraints

on the edges.

Definition: Maximum flow problem

An instance of a max flow problem is defined by the following:

• A directed graph G = (V,E), where V is the set of nodes and E ⊆ V ×V is the

set of directed edges.

• A capacity function c : E → R+, where c(u, v) is the maximum flow allowed on

edge (u, v).

• A source node s ∈ V and a target node t ∈ V .

A flow function f : E → R+ is called feasible if it satisfies:

1. Capacity constraints:

f(u, v) ≤ c(u, v), ∀ (u, v) ∈ E

1. Flow conservation:

∑
v∈V

f(v, u) =
∑
v∈V

f(u, v), ∀ u ∈ V \ {s, t}
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The goal of the max flow problem is to find a feasible flow that maximizes the value

of the flow, defined as

V (f) :=
∑
v∈V

f(s, v)

The maximum flow problem admits the following conceptually helpful decomposition the-

orem:

Fact: Flow decomposition

Consider an instance (G, c, s, t) of the max-flow problem and any feasible flow f .

Then there exists a collection of feasible flows f1, . . . , fI for some I ≤ |E| and a

collection of paths p1, . . . , pI along G , each of which starts in s and ends in t, such

that

•
∑

i V (fi) = V (f)

•
∑

i fi(u, v) ≤ f(u, v), for all (u, v) ∈ E.

Using the flow decomposition theorem, one can show the following deep connection be-

tween evaluating the transferrable trusted balance and the maximum flow problem:

Fact: Transferrable trusted balance as maximum flow problem

Let S ∈ S be some state and Ns, Nr ⊆ N be two disjoint subsets. We define the

following instance of a maximum flow problem:

• V = {s, t} ∪ {vn}n∈N ∪ {Vnk}n∈N,k∈K is a set of consisting of |N |(|K| + 1) + 2

different nodes: the source and the target, one node for each account in N

and one node for every combination of account and currency.

• E = {(s, vn)}n∈Ns ∪ {(vn′ , t)}n′∈Nr ∪ {(vn, vnk}n∈N,k∈K ∪ {(vnk, vn′)}n,n′∈N,k∈G(n′)

consists of edges going from the source to the senders, from the receivers to

the target, from each account node to the corresponding combination nodes

and from each combination node to all those accounts nodes that trust the

currency in the combination.

• The capacity function is as follows:

– c(s, vn) = c(vn′ , t) = ∞
– c(vn, vnk) = c(vnk, vn’) = Bnk

– c(vnk, vn’) = Bnk

Let f denote the optimal flow for this instance. Then
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V (f) = TG(Ns → Nr|S)

While this is by nomeans obvious , we here skip a formal proof of this statement. To state the

main result of this section, the final ingredient we need is the max-flow min-cut theorem,

which is a well-established and foundational theorem in graph theory

Max-flowmin-cut theorem

Let (G, c, s, t) be an instance of a max-flow problem. An s-t cut is defined as an

ordered partition (S, T ) of the vertex set V into two disjoint subsets S, T ⊆ V such

that S ∪ T = V , S ∩ T = ∅, s ∈ S , and t ∈ T . The capacity of the s-t cut (S, T ) is

given by

c(S, T ) :=
∑

(u,v)∈E u∈S,v∈T

c(u, v).

The Max-flowmin-cut theorem states that for every instance of the maximum flow

problem, the maximum value of a feasible flow from s to t is equal to the minimum

capacity of any s-t cut. Formally:

max
f

V (f) = min
(S,T ):s∈S,t∈T

c(S, T )

Using the equivalence between the max-flow mapping and the problem of obtaining the

transferrable trusted balance, we can now show the following characterization of the trans-

ferrable trusted balance:

Characterization of transferrable trusted balance

For any disjoint sets Ns, Nr ⊆ N and any state S ∈ S ,

TG(Ns → Nr|S) = min
Ñ⊆N :Ns⊆Ñ,Nr⊆N\Ñ

BT (Ñ → N\Ñ |S).

Proof Sketch: The idea for the proof is simple. From themax-flowmin-cut theorem

and the equivalence above, it follows that the transferrable trusted balance is given

by the minimal capacity over all Ns - Nr cuts for the instance defined above. Now,

we can further partition the set of all these cuts into subsets such that all cuts in

each partition element share the same account nodes vn in both parts of the cut.

Then, every partition element corresponds to a set of nodes Ñ that contains all

sender nodes and no receiver node. In a second step, a simple argument shows
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that the minimal capacity over all cuts in the partition element corresponding to

Ñ is given by BT (Ñ → N\Ñ |S). As such, the transferrable trusted balance is then

simply equal to the minimal of this quantity over all elements of the partition.

9.8 Relative Sybil resistance

In this section, we derive sybil resistance that is stated in the main text. Let us first restate

it using notation that is adapted to the notation in this appendix:

Relative Sybil resistance

Let M be a set of accounts controlled by a malicious party, F a set of accounts

not in M that are trust at least one account in M (i.e. the ingoing outer boundary

of M) and let R = N\M ∪ F be the remainder of the network. Then, if accounts in

M initially hold no funds trusted by users in R, for any given state S,

T (M → R|S) ≤ BT (F → R|S).

Proof: This follows immediately from the characterization of the transferrable trusted

balance in the last section, by setting Ns = M,Nr = R and Ñ = M ∪ F :

T (M → R|S) ≤ BT (M ∪ F → R|S)
= BT (M\δM → R|S) +BT (F → R|S)
= BT (F → R|S)

9.9 Liquidity clusters and ASF

In this section, we provide the formal background to our discussion of liquidity clusters.

Definition: Fungibility order and liquidity clusters

For any two distinct currencies k, k’ ∈ K , a state S = (G,B) and some l ≥ 0, we

write

k �l,S k′

if any set of l tokens of currency k can be translated by its holders into the same

amount of currency k’. Formally, we require that for every account n such that
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B(n, k|S) ≥ l, there exists a state S’ = (G′, B′) such that S′ ∈ ST
n (S) and

B(n, k|S′) = B(n, k|S)− l

B(n, k′|S′) = B(n, k′|S) + l.

Moreover, to avoid vacuous truths, we require that there is at least n ∈ N with

sufficient funds of k and we define k �l,S k for any k. We call the family of orders

(�l,S)l∈R+ the fungibility orders with respect to state S. Finally, we define

k ∼l,S k′ :⇔ k �l,S k′ ∧ k′ �l,S k.

We say that a set of currencies K̃ ⊆ K forms a l-liquidity cluster in state S if

k ∼l,S k′ ∀ k, k′ ∈ K̃.

Note that we restrict the possible state transitions in the definition of the fungibility order

to trust swaps. This is because we are interested in the ability of accounts in the network

to interchange amounts of different currencies and if we included direct transfers, then our

definition would not capture this intention (the same does not apply to trusting and un-

trusting, but theymake no difference in this context). The following provides a conceptually

simple sufficient criterion for the fungibility between two currencies:

Fact: Sufficient criterion for fungibility

For any two currencies k, k’ ∈ K and a state S, if there exists an integer I > 0, a

sequence of currencies (ki)
I
i=0 and accounts (ni)

I
i=0 such that, k0 = k, kI = k′ and

it holds that,

ki ∈ KG(ni+1), i = 0, . . . , I − 1

B(ni, ki|S) ≥ l, i = 0, . . . , I

then k �l,S k’.

Proof: Since fungibility holds reflexively by definition, we can assume w.l.o.g. that

k 6= k’. Next, we construct a new sequence from the original sequence in which

every pair (ni, ki) appears only once, by iterating through the pairs and truncat-

ing the original sequence between any pairs that appear more than once. Let us

then assume w.l.o.g. that the sequence above already satisfies this property. Now,

consider a single party ñ such that B(ñ, k) ≥ l. We consider the state transition
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induced by a sequence of I trust swaps, where in the ith swap ñ swaps an amount

l of currency ki against currency ki+1with ni. This trust transfer is possible by the

assumptions above and the fact that every pair (ni, ki), so that previous swaps in-

volving the same party cannot have affected the relevant holdings of the party ni.

At the end of the swaps, ñ has transformed l k-tokens into l k’-tokens. Moreover, by

assuymptionwe know that there exists at least one account, n0 that holds sufficient

funds initially, as required.

Average spendable fraction

In this section, we prove the stated relationships between average spendable fraction (ASF)

and k-liquidity clusters from the main text. Recall that ASF is defined, using the notation of

the appendix, as

ASF (Ñ |S) = 1

|Ñ |(|Ñ | − 1)

∑
n,n′∈Ñ,n 6=n′

TG(n → n′|S)
B(n,K|S)

,

for any set of accounts Ñ and state S. We now formally define the fungibility order and

l-liquidity clusters.

We are now in a position to prove the following:

Fact:

For any state S ∈ S , let Ñ ⊆ N and K̃ ⊆ K be two sets such that every account in

Ñ trusts at least one currency in K̃ . Then, if K̃ forms a l-liquidity cluster in state

S,

T (n → n’|S) ≥ min{max
k∈K̃

B(n, k|S), l}, ∀ n, n ∈ Ñ : n 6= n′

Proof: Consider any distinctn, n′ ∈ Ñ . Let l∗ = maxk∈K̃ B(n, k|S) and k∗ = argmaxk∈K̃ B(n, k|S).
Moreover, let k′ ∈ K̃ be a currency that n’ trusts. This currency exists by assump-

tion. Since K̃ forms a l-liquidity cluster, n can achieve a final state S’ in which they

hold an amount of at least max{l, l∗} of currency k’ from their holdings of k∗, using

trust swaps. Hence,

T (n → n′|S) ≥ B(n, k′|S′) ≥ max{l, l∗}.

Corollary:

For any state S ∈ S , Ñ ⊆ N and K̃ ⊆ K , the following hold:
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If

• every account in Ñ tÑK̃ ,

• K̃ is a l-liquidity cluster,

• every account in Ñ holds at least l of some k ∈ K̃ ,

then

ASF (Ñ |S) ≥ l|Ñ |
B(Ñ ,K|S)

.

Proof: We have

ASF (Ñ |S) = 1

|Ñ |(|Ñ | − 1)

∑
n,n′∈Ñ,n 6=n′

T (n → n′|S)
B(n,K|S)

,

≥ l

|Ñ |

∑
n

1

B(n,K|S)

≥ l|Ñ |∑
nB(n,K|S)

=
l|Ñ |

B(Ñ ,K|S)
,

where in the first step we used that T (n → n’|S) ≥ l, and in the second stepwe used

the AM-HM inequality, which states that for any n ≥ 1 and positive real numbers

a1, a2, . . . , an,

1

a1
+

1

a2
+ · · ·+ 1

an
≥ n2

a1 + a2 + · · ·+ an
.

9.9.1 Exchange rates

So far we have been concerned only with the possible state transitions under the rules of

Circles. We now introduce the possibility of exchanging different kinds of currencies. We

distinguish two scenarios:

“Internal” exchange for different currencies

In the first scenario, accounts have the possibility to exchange some of the currencies at

a given rate R : K ×K → R+, where R(k → k’) denotes the number of k’ tokens received

in exchange for a single token of currency k. We write S →Ñ,R S’ for two states S, S’ and

and a set of accounts Ñ such that S’ can be reached from S by means of a sequence of

state transitions and exchanges that are initiated by accounts in Ñ . We assume that these

rates are provided by market makers and for now, we make the simplifying assumption

that exchange rates don’t change in the course of the exchanges and we also place no

limit on the amount of tokens that can be exchanged at the rate. We expect that both of
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these assumptions approximately hold when Ñ makes up only a small fraction of the total

account base and their exchanges involve only a small subset of the total supply of the

involved currencies.

For a given exchange rate functionR, we can define thewealth functionW via themapping

W (Ñ , k|S) :=
∑
k′∈K

B(Ñ , k′|S)R(k′ → k)

so that W (Ñ , k|S) indicates the total amount of k tokens that accounts Ñ could obtain if

they exchanged all their holdings into that currency. Using this wealth function, we can

define the notion that a given set of exchange rates allows no arbitrage:

Definition: Absence of arbitrage

We say that an exchange rate function R allows no arbitrage in state S = (G,B), if

the following two conditions are satisfied:

1. Account-facing: It is impossible for any set of users to increase their wealth

in any currency using any combination of state transitions, exchanges and

borrowing. Formally, we require that for all Ñ ⊆ N, k ∈ K , and every BC ∈
RN×K
+ that has support only over Ñ ,

W (Ñ , k|S) = max
(G,B+BC)→Ñ,R(G′,B′+BC)

W (Ñ , k|(G′, B′)),

where as before BC corresponds to tokens that members of Ñ have borrowed and

that they need to return at the end of the transition.

1. Market-maker facing: Rates are competitive in the sense that it is impossible

for market makers to make a profit from cyclic conversions: Let (ki)
I
i=0 be any

cyclic sequence of currencies such that k0 = kI , then we require that

I−1∏
i=0

R(ki → ki+1) ≥ 1.

The absence of arbitrage implies that internal exchange rates have to reflect the presence

of liquidity clusters, as we now show:

Internal exchange rates without arbitrage respect liquidity clusters
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For any state S = (G,B) with B not all zero, and any exchange rate function R. If

R allows no arbitrage in S, then there exists a value function V : K → R such that

R(k → k′) =
V (k)

V (k′)

and with the property that, for any l > 0,

k �l,S k′ ⇒ V (k) ≥ V (k′).

Proof: Assume that R allows no arbitrage in S. By the fact that that rates are com-

petitive, R is strictly positive. Let n be a user that holds a positive balance. This

user exists by the assumption that B is not all zero. Since n holds a positive bal-

ance and R is strictly positive, W (n, k) is also strictly positive for any k ∈ K . Now,

let k1, k2 ∈ K be an arbitrary pair of currencies. Consider the sequence of transi-

tions, in which n exchanges all their holdings for k1, then for k2 and then back to k1.

By definition of the wealth function and the account facing arbitrage property, it

follows that

W (n, k1) ≥ W (n, k1)R(k1 → k2)R(k2 → k1).

Using the fact that W (n, k1) > 0 and combining this with the market-maker facing

condition implies that

R(k1 → k2) =
1

R(k2 → k1)

Now, finally, let k3 ∈ K be a third currency and consider the same cyclic sequence

of transitions as above but now using k3 as an additional intermediate currency.

Then by the same argument, and using the above invertibility property,

R(k2 → k3) =
R(k2 → k1)

R(k3 → k1)

=
V (k2)

V (k3)
,

where we defined V (k) := R(k → k1) for any k ∈ K . The second property easily

follows by contradiction: Assume that there exist k, k’ and an l > 0 such that k �l,S

k’ but that V (k) < V (k’). Then, by definition of the fungibility ordering there exists

an account n that holds some amount l of k tokens that they can convert to the

same amount of k’ tokens. Now, this user can perform the following sequence of

transitions: First they turn l k tokens into k’ tokens, then exchange them for k1

tokens and then then exchange the k1 tokens back to k tokens. This sequence of
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transitions has strictly increased their holdings of k tokens, since

l(R(k′ → k1)R(k1 → k)− 1) = l

(
V (k′)

V (k)
− 1

)
> l,

while it has left the remaining holdings of n unchanged. As such, by the positivity

of R, it has also increased the wealth of n with respect to any currency, in contra-

diction with the assumed absence of arbitrage.

“External” exchange rate

We now change the scenario and assume that there exists an external asset z and that

some market maker offers exchange rates R(z → k) and R(k → z) for all currencies k ∈ K .

The exchange rate function R naturally induces an extension to “internal” exchange rates,

via

R(k → k′) ≡ R(k → z)R(z → k′)

Using this extended definition, we define the wealth function in the absence of arbitrage

property exactly like in the previous section, only for the setK∪{z}. As such, the character-
ization of the exchange rates through fungibility order respecting value functions also car-

ries through. In particular, by setting, as we can without loss of generality, V (k) = R(k → z),

the characterization implies that, in the absence of arbitrage, prices in the external assets

will have to reflect the fungibility between tokens, in a given state.

Implications for accounts that create their own currency

In the previous sections, we have developed the theory of Circles, by treating accounts and

currencies separately and without any special relationship between individual accounts

and individual currencies. This was for conceptual clarity, but things simplify once we ex-

plicitly account for the fact that accounts create their own currency: In particular, let us

now add the additional assumptions that |N | = |K| and that there exists a bijective map-

ping k : N → K so that k(n) is the currency that is created by account n. In this case, the

balance matrix B and trust matrix G are n × n matrices and we sometimes write Gnn’ to

indicate the trust relation between two accounts. Moreover, we assume that k(n) ∈ KG(n)

for all n ∈ N , that is, all accounts trust their own currency. Then, we get the following simple

implication of the above results

Fact: Value flows opposite to trust

For any state S in which every account holds some of their own currency, then

exchange rates in the absence of arbitrage reflect the trust connections between

users:

50



Gnn′ = 1 ⇒ V (k(n′)) ≥ V (k(n)), ∀n, n′

Proof: By virtue of the path-based sufficient criterion for fungibility, the assumption

of trust and that B(n, k(n)|S) > 0 for all n, implies that k(n’) �l,S k(n) for some

amount l > 0, since n’ can simply exchange their own tokens for that of n. Then,

by the above statement about exchange rate implications of fungibility, the result

follows.
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